• Skip to main content
  • Bỏ qua primary sidebar

Học Tập Việt Nam

Trang về học tập tổng hợp các vấn đề liên quan đến việc cho học sinh phổ thông.

Ôn tập chương 4: HÀM SỐ Y=AX^2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

20/12/2021 by adminhoctap

1. Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

a. Sự đồng biến và nghịch biến của hàm số

Cho hàm số $y = {\rm{a}}{{\rm{x}}^2}\,\,(a \ne 0)$.

a) Nếu $a > 0$ thì hàm số nghịch biến khi $x 0$.

b) Nếu $a 0$.

b. Đồ thị của hàm số

Đồ thị của hàm số  $y = {\rm{a}}{{\rm{x}}^2}\,\,(a \ne 0)$ là một parabol đi qua gốc tọa độ O, nhận Oy làm trục đối xứng (O là đỉnh của parabol).

– Nếu $a > 0$ thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.

– Nếu $a O là điểm cao nhất của đồ thị.

2. Phương trình bậc hai một ẩn

a. Công thức nghiệm của phương trình bậc hai

Xét phương trình bậc hai một ẩn $a{x^2} + bx + c = 0\,\,(a \ne 0)$

và biệt thức $\Delta  = {b^2} – 4ac$.

TH1. Nếu $\Delta 

TH2. Nếu  $\Delta  = 0$ thì phương trình có nghiệm kép: ${x_1} = {x_2} =  – \dfrac{b}{a}$

TH3. Nếu $\Delta  > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1,2}} = \dfrac{{ – b \pm \sqrt \Delta  }}{{2a}}$

b. Công thức nghiệm thu gọn của phương trình bậc hai

Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)$ với $b =2b’$

và biệt thức $\Delta ‘ = {b^{‘2}} – ac.$

Trường hợp 1. Nếu $\Delta ‘

Trường hợp 2. Nếu $\Delta ‘ = 0$ thì phương trình có nghiệm kép ${x_1} = {x_2} =  – \dfrac{{b’}}{a}$

Trường hợp 3. Nếu $\Delta ‘ > 0$ thì phương trình có hai nghiệm phân biệt: ${x_{1,2}} =  – \dfrac{{b’ \pm \sqrt {\Delta ‘} }}{a}$

c. Hệ thức vi-et.

Cho phương trình bậc hai $a{x^2} + bx + c = 0\,(a \ne 0).$ Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình thì \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \dfrac{{ – b}}{a}\\P = {x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

d. Ứng dụng của hệ thức vi-ét.

a) Xét phương trình bậc hai: $a{x^2} + bx + c = 0\,(a \ne 0).$

– Nếu phương trình có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1,\) nghiệm kia là \({x_2} = \dfrac{c}{a}.\)

– Nếu phương trình có \(a – b + c = 0\) thì phương trình có một nghiệm là \({x_1} =  – 1,\) nghiệm kia là \({x_2} =  – \dfrac{c}{a}.\)

b) Tìm hai số biết tổng và tích của chúng : Nếu hai số có tổng bằng $S$ và tích bằng $P$ thì hai số đó là hai nghiệm của phương trình ${X^2} – SX + P = 0$.

3. Bài toán về sự tương giao giữa đường thẳng và parabol

Cho đường thẳng \(d:y = mx + n\) và parabol \(\left( P \right):y = a\,{x^2}\left( {a \ne 0} \right)\) . Khi đó:

– Số giao điểm của \(d\) và \(\left( P \right)\) bằng đúng số nghiệm của phương trình hoành độ giao điểm của chúng: \(a{x^2} = mx + n\) .

– Nghiệm của phương trình \(a{x^2} = mx + n\) (nếu có) chính là hoành độ giao điểm của \(d\) và \(\left( P \right)\) .

4. Phương trình đưa về phương trình bậc hai

a. Phương trình trùng phương

 +  Phương trình trùng phương là phương trình có dạng:

                         $a{x^4} + b{x^2} + c = 0\,(a \ne 0).$

+ Cách giải: Đặt ẩn phụ \(t = {x^2}(t \ge 0)\)để đưa phương trình về phương trình bậc hai:

                       \(a{t^2} + bt + c = 0\,(a \ne 0).\)

b. Phương trình chứa ẩn ở mẫu thức

Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau:

Bước 1. Tìm điều kiện xác định của ẩn của phương trình.

Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu.

Bước 3. Giải phương trình vừa nhận được ở bước 2.

Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận.

c. Phương trình đưa về dạng tích

Để giải phương trình đưa về dạng tích, ta có các bước giải như sau:

Bước 1. Phân tích vế trái thành nhân tử, vế phải bằng $0.$

Bước 2. Xét từng nhân tử bằng $0$ để tìm nghiệm.

5. Giải bài toán bằng cách lập phương trình

Các bước giải bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

+ Chọn ẩn số và đặt điều kiện cho ẩn số.

+ Biểu thị các dữ kiện chưa biết qua ẩn số.

+ Lập phương trình biểu thị tương quan giữa ẩn số và các dữ kiện đã biết.

Bước 2. Giải phương trình.

Bước 3. Đối chiếu nghiệm của phương trình (nếu có) với điều kiện ẩn số và đề bài để đưa ra kết luận.

 

Thuộc chủ đề:Tổng ôn tập MÔN TOÁN Lớp 9

Sidebar chính

Bài viết mới

  • Ôn tập chương 7 – Phương pháp tọa độ trong không gian
  • Phương pháp giải các bài toán về mặt cầu và đường thẳng
  • Phương pháp giải các bài toán về mặt cầu và mặt phẳng
  • Phương trình mặt cầu
  • Phương pháp giải các bài toán về mặt phẳng và đường thẳng

Chuyên mục

  • Công thức Lý lớp 6 (19)
  • Công thức Lý lớp 7 (25)
  • Công thức Sinh lớp 6 (50)
  • Công thức Toán lớp 6 (69)
  • Công thức Toán lớp 7 (55)
  • Học Tiếng Anh 12 (14)
  • Lý thuyết Anh lớp 7 (60)
  • Lý thuyết Địa lớp 7 (49)
  • Lý thuyết Sinh lớp 7 (47)
  • Lý thuyết Sử lớp 7 (38)
  • Lý thuyết Văn lớp 6 (272)
  • Lý thuyết Văn lớp 7 (271)
  • Tổng ôn tập MÔN ĐỊA Lớp 10 (21)
  • Tổng ôn tập MÔN ĐỊA Lớp 11 (20)
  • Tổng ôn tập MÔN ĐỊA Lớp 12 (65)
  • Tổng ôn tập MÔN ĐỊA Lớp 8 (36)
  • Tổng ôn tập MÔN ĐỊA Lớp 9 (33)
  • Tổng ôn tập MÔN GDCD Lớp 10 (14)
  • Tổng ôn tập MÔN GDCD Lớp 11 (10)
  • Tổng ôn tập MÔN GDCD Lớp 12 (9)
  • Tổng ôn tập MÔN HÓA Lớp 10 (36)
  • Tổng ôn tập MÔN HÓA Lớp 11 (58)
  • Tổng ôn tập MÔN HÓA Lớp 12 (77)
  • Tổng ôn tập MÔN HÓA Lớp 8 (39)
  • Tổng ôn tập MÔN HÓA Lớp 9 (45)
  • Tổng ôn tập MÔN LÝ Lớp 10 (49)
  • Tổng ôn tập MÔN LÝ Lớp 11 (52)
  • Tổng ôn tập MÔN LÝ Lớp 12 (78)
  • Tổng ôn tập MÔN LÝ Lớp 8 (24)
  • Tổng ôn tập MÔN LÝ Lớp 9 (42)
  • Tổng ôn tập MÔN SINH Lớp 10 (30)
  • Tổng ôn tập MÔN SINH Lớp 11 (46)
  • Tổng ôn tập MÔN SINH Lớp 12 (64)
  • Tổng ôn tập MÔN SINH Lớp 8 (57)
  • Tổng ôn tập MÔN SINH Lớp 9 (47)
  • Tổng ôn tập MÔN SỬ Lớp 10 (46)
  • Tổng ôn tập MÔN SỬ Lớp 11 (37)
  • Tổng ôn tập MÔN SỬ Lớp 12 (47)
  • Tổng ôn tập MÔN SỬ Lớp 8 (32)
  • Tổng ôn tập MÔN SỬ Lớp 9 (37)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 10 (54)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 11 (46)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 12 (65)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 8 (51)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 9 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 10 (46)
  • Tổng ôn tập MÔN TOÁN Lớp 11 (58)
  • Tổng ôn tập MÔN TOÁN Lớp 12 (71)
  • Tổng ôn tập MÔN TOÁN Lớp 8 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 9 (53)
  • Tổng ôn tập MÔN VĂN Lớp 10 (247)
  • Tổng ôn tập MÔN VĂN Lớp 11 (248)
  • Tổng ôn tập MÔN VĂN Lớp 12 (92)
  • Tổng ôn tập MÔN VĂN Lớp 8 (273)
  • Tổng ôn tập MÔN VĂN Lớp 9 (294)

Học Tập VN (c) 2021 - Giới thiệu - Liên hệ - Sitemap - Bảo mật.
Môn Toán - Học Z - Sách toán - Lop 12 - Hoc VN - Hoc Trắc nghiệm