• Skip to main content
  • Bỏ qua primary sidebar

Học Tập Việt Nam

Trang về học tập tổng hợp các vấn đề liên quan đến việc cho học sinh phổ thông.

Ôn tập chương 1 – Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

04/01/2022 by adminhoctap

1. Sự đồng biến, nghịch biến của hàm số

Cho hàm số $y = f\left( x \right)$, khi đó:

+) $f’\left( x \right) > 0$ trên khoảng nào thì hàm số đồng biến trên khoảng đó.

+) $f’\left( x \right)

Điều kiện để hàm số đồng biến, nghịch biến trên khoảng \(\left( {a;b} \right)\)

+) Để hàm số đồng biến trên khoảng $\left( {a,b} \right)$ thì $f’\left( x \right) \ge 0,\forall x \in \left( {a,b} \right)$.

+) Để hàm số nghịch biến trên khoảng $\left( {a,b} \right)$ thì $f’\left( x \right) \le 0,\forall x \in \left( {a,b} \right).$

2. Cực trị của hàm số

Dấu hiệu 1:

+) Nếu  $f’\left( {{x_0}} \right) = 0$ hoặc $f’\left( x \right)$ không xác định tại ${x_0}$ và nó đổi dấu từ dương sang âm khi qua ${x_0}$ thì ${x_0}$ là điểm cực đại của hàm số.

+) Nếu  $f’\left( {{x_0}} \right) = 0$ hoặc $f’\left( x \right)$ không xác định tại ${x_0}$ và nó đổi dấu từ âm sang dương khi qua ${x_0}$ thì ${x_0}$ là điểm cực tiểu của hàm số.

*) Quy tắc 1: (dựa vào dấu hiệu 1)

+) Tính $y’$

+) Tìm các điểm tới hạn của hàm số. (tại đó $y’ = 0$ hoặc $y’$ không xác định)

+) Lập bảng xét dấu $y’$ và dựa vào bảng xét dấu và kết luận.

Dấu hiệu 2:

Cho hàm số $y = f\left( x \right)$ có đạo hàm đến cấp $2$ tại ${x_0}$.

+) ${x_0}$ là điểm cực đại $ \Leftrightarrow \left\{ \begin{array}{l}f’\left( {{x_0}} \right) = 0\\f”\left( {{x_0}} \right)

+) ${x_0}$ là điểm cực tiểu $ \Leftrightarrow \left\{ \begin{array}{l}f’\left( {{x_0}} \right) = 0\\f”\left( {{x_0}} \right) > 0\end{array} \right.$

*) Quy tắc 2: (dựa vào dấu hiệu 2)

+) Tính $f’\left( x \right),f”\left( x \right)$.

+) Giải phương trình $f’\left( x \right) = 0$ tìm nghiệm.

+) Thay nghiệm vừa tìm vào $f”\left( x \right)$ và kiểm tra, từ đó suy kết luận.

3. Giá trị lớn nhất và giá tị nhỏ nhất của hàm số

Quy tắc tìm GTLN – GTNN của hàm số:

*) Quy tắc chung: (Thường dùng cho $D$ là một khoảng)

– Tính $f’\left( x \right)$, giải phương trình $f’\left( x \right) = 0$ tìm nghiệm trên $D.$

– Lập BBT cho hàm số trên $D.$

– Dựa vào BBT và định nghĩa từ đó suy ra GTLN, GTNN.

*) Quy tắc riêng: (Dùng cho $\left[ {a;b} \right]$) . Cho hàm số $y = f\left( x \right)$ xác định và liên tục trên $\left[ {a;b} \right]$

– Tính $f’\left( x \right)$, giải phương trình $f’\left( x \right) = 0$ tìm nghiệm trên $\left[ {a,b} \right]$.

– Giả sử phương trình có các nghiệm ${x_1},{x_2},… \in \left[ {a,b} \right]$.

– Tính các giá trị $f\left( a \right),f\left( b \right),f\left( {{x_1}} \right),f\left( {{x_2}} \right),…$.

– So sánh chúng và kết luận.

4. Tiệm cận của đồ thị hàm số

+) Đường thẳng $x = a$ là TCĐ của đồ thị hàm số $y = f\left( x \right)$ nếu có một trong các điều kiện sau:

$\mathop {\lim }\limits_{x \to {a^ + }} y =  + \infty $ hoặc $\mathop {\lim }\limits_{x \to {a^ + }} y =  – \infty $ hoặc$\mathop {\lim }\limits_{x \to {a^ – }} y =  + \infty $ hoặc $\mathop {\lim }\limits_{x \to {a^ – }} y =  – \infty $

+) Đường thẳng $y = b$ là TCN của đồ thị hàm số $y = f\left( x \right)$ nếu có một trong các điều kiện sau:

$\mathop {\lim }\limits_{x \to  + \infty } y = b$ hoặc $\mathop {\lim }\limits_{x \to  – \infty } y = b$

5. Bảng biến thiên và đồ thị hàm số

a) Các dạng đồ thị hàm số bậc ba $y = a{x^3} + b{x^2} + cx + d$

b) Các dạng đồ thị hàm số bậc bốn trùng phương $y = a{x^4} + b{x^2} + c$

c) Các dạng đồ thị hàm số $y = \dfrac{{ax + b}}{{cx + d}}$

+) Tập xác định: $D = R\backslash \left\{ { – \dfrac{d}{c}} \right\}$

+) Đạo hàm: $y = \dfrac{{ad – bc}}{{{{\left( {cx + d} \right)}^2}}}$

– Nếu $ad – bc > 0$ hàm số đồng biến trên từng khoảng xác định. Đồ thị nằm góc phần tư $2$ và $4.$

– Nếu $ad – bc hàm số nghịch biến trên từng khoảng xác định. Đồ thị nằm góc phần tư $1$ và $3.$

+) Đồ thị hàm số có: TCĐ: $x =  – \dfrac{d}{c}$ và TCN: $y = \dfrac{a}{c}$

+) Đồ thị có tâm đối xứng: $I\left( { – \dfrac{d}{c};\dfrac{a}{c}} \right)$

6. Sự tương giao của đồ thị hàm số

a) Tìm giao điểm của hai đồ thị hàm số

Phương pháp:

Cho $2$ hàm số $y = f\left( x \right),y = g\left( x \right)$ có đồ thị lần lượt là $\left( C \right)$ và $\left( {C’} \right).$  

+) Lập phương trình hoành độ giao điểm của $\left( C \right)$ và $\left( {C’} \right):$$f\left( x \right) = g\left( x \right)\,\,\,\left( * \right)$

+) Giải phương trình tìm $x$ từ đó suy ra $y$ và tọa độ giao điểm.

+) Số nghiệm của $\left( * \right)$ là số giao điểm của $\left( C \right)$ và $\left( {C’} \right).$

b) Tương giao của đồ thị hàm số bậc ba

Phương pháp 1: Bảng biến thiên (PP đồ thị)

+) Lập phương trình hoành độ giao điểm dạng $F\left( {x,m} \right) = 0$ (phương trình ẩn $x$ tham số $m$)

+) Cô lập $m$ đưa phương trình về dạng $m = f\left( x \right)$

+) Lập BBT cho hàm số $y = f\left( x \right)$.

+) Dựa vào giả thiết và BBT từ đó suy ra $m.$

*) Dấu hiệu: Sử dụng PP bảng biến thiên khi $m$ độc lập với $x.$

Phương pháp 2: Nhẩm nghiệm – tam thức bậc 2.

+) Lập phương trình hoành độ giao điểm $F\left( {x,m} \right) = 0$

+) Nhẩm nghiệm: (Khử tham số). Giả sử $x = {x_0}$ là $1$ nghiệm của phương trình.

+) Phân tích: $F\left( {x,m} \right) = 0 \Leftrightarrow \left( {x – {x_0}} \right).g\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_0}\\g\left( x \right) = 0\end{array} \right.$ ($g\left( x \right) = 0$ là phương trình bậc $2$ ẩn $x$ tham số $m$).

+) Dựa vào yêu cầu bài toán đi xử lý phương trình bậc $2$ $g\left( x \right) = 0$.

Thuộc chủ đề:Tổng ôn tập MÔN TOÁN Lớp 12

Sidebar chính

Bài viết mới

  • Ôn tập chương 7 – Phương pháp tọa độ trong không gian
  • Phương pháp giải các bài toán về mặt cầu và đường thẳng
  • Phương pháp giải các bài toán về mặt cầu và mặt phẳng
  • Phương trình mặt cầu
  • Phương pháp giải các bài toán về mặt phẳng và đường thẳng

Chuyên mục

  • Công thức Lý lớp 6 (19)
  • Công thức Lý lớp 7 (25)
  • Công thức Sinh lớp 6 (50)
  • Công thức Toán lớp 6 (69)
  • Công thức Toán lớp 7 (55)
  • Học Tiếng Anh 12 (14)
  • Lý thuyết Anh lớp 7 (60)
  • Lý thuyết Địa lớp 7 (49)
  • Lý thuyết Sinh lớp 7 (47)
  • Lý thuyết Sử lớp 7 (38)
  • Lý thuyết Văn lớp 6 (272)
  • Lý thuyết Văn lớp 7 (271)
  • Tổng ôn tập MÔN ĐỊA Lớp 10 (21)
  • Tổng ôn tập MÔN ĐỊA Lớp 11 (20)
  • Tổng ôn tập MÔN ĐỊA Lớp 12 (65)
  • Tổng ôn tập MÔN ĐỊA Lớp 8 (36)
  • Tổng ôn tập MÔN ĐỊA Lớp 9 (33)
  • Tổng ôn tập MÔN GDCD Lớp 10 (14)
  • Tổng ôn tập MÔN GDCD Lớp 11 (10)
  • Tổng ôn tập MÔN GDCD Lớp 12 (9)
  • Tổng ôn tập MÔN HÓA Lớp 10 (36)
  • Tổng ôn tập MÔN HÓA Lớp 11 (58)
  • Tổng ôn tập MÔN HÓA Lớp 12 (77)
  • Tổng ôn tập MÔN HÓA Lớp 8 (39)
  • Tổng ôn tập MÔN HÓA Lớp 9 (45)
  • Tổng ôn tập MÔN LÝ Lớp 10 (49)
  • Tổng ôn tập MÔN LÝ Lớp 11 (52)
  • Tổng ôn tập MÔN LÝ Lớp 12 (78)
  • Tổng ôn tập MÔN LÝ Lớp 8 (24)
  • Tổng ôn tập MÔN LÝ Lớp 9 (42)
  • Tổng ôn tập MÔN SINH Lớp 10 (30)
  • Tổng ôn tập MÔN SINH Lớp 11 (46)
  • Tổng ôn tập MÔN SINH Lớp 12 (64)
  • Tổng ôn tập MÔN SINH Lớp 8 (57)
  • Tổng ôn tập MÔN SINH Lớp 9 (47)
  • Tổng ôn tập MÔN SỬ Lớp 10 (46)
  • Tổng ôn tập MÔN SỬ Lớp 11 (37)
  • Tổng ôn tập MÔN SỬ Lớp 12 (47)
  • Tổng ôn tập MÔN SỬ Lớp 8 (32)
  • Tổng ôn tập MÔN SỬ Lớp 9 (37)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 10 (54)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 11 (46)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 12 (65)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 8 (51)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 9 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 10 (46)
  • Tổng ôn tập MÔN TOÁN Lớp 11 (58)
  • Tổng ôn tập MÔN TOÁN Lớp 12 (71)
  • Tổng ôn tập MÔN TOÁN Lớp 8 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 9 (53)
  • Tổng ôn tập MÔN VĂN Lớp 10 (247)
  • Tổng ôn tập MÔN VĂN Lớp 11 (248)
  • Tổng ôn tập MÔN VĂN Lớp 12 (92)
  • Tổng ôn tập MÔN VĂN Lớp 8 (273)
  • Tổng ôn tập MÔN VĂN Lớp 9 (294)

Học Tập VN (c) 2021 - Giới thiệu - Liên hệ - Sitemap - Bảo mật.
Môn Toán - Học Z - Sách toán - Lop 12 - Hoc VN - Hoc Trắc nghiệm