• Skip to main content
  • Bỏ qua primary sidebar

Học Tập Việt Nam

Trang về học tập tổng hợp các vấn đề liên quan đến việc cho học sinh phổ thông.

Đồ thị hàm số và phép tịnh tiến hệ tọa độ

04/01/2022 by adminhoctap

1. Các kiến thức cần nhớ

Công thức tịnh tiến hệ tọa độ:

Cho điểm \(I\left( {{x_0};{y_0}} \right),M\left( {x;y} \right)\) đối với hệ tọa độ \(Oxy\)

Công thức chuyển hệ tọa độ trong phép tịnh tiến theo véc tơ \(\overrightarrow {OI} \) là: \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

Khi đó điểm \(I\left( {0;0} \right),M\left( {X,Y} \right)\) đối với hệ tọa độ \(IXY\)

Phương trình đường cong trong hệ tọa độ mới:

Cho đường cong \(\left( C \right):y = f\left( x \right)\) trong hệ tọa độ \(Oxy\), khi đó phương trình của \(\left( C \right)\) trong hệ tọa độ \(IXY\) là:

\(Y = f\left( {X + {x_0}} \right) – {y_0}\)

Tâm đối xứng của đồ thị hàm số:

Nếu hàm số \(Y = g\left( X \right)\) là hàm số lẻ (trong hệ tọa độ mới \(IXY\)) thì điểm \(I\left( {{x_0};{y_0}} \right)\) trong hệ tọa độ \(Oxy\) là tâm đối xứng của đồ thị hàm số \(y = f\left( x \right)\)

2. Một số dạng toán thường gặp

Dạng 1: Tìm công thức chuyển hệ tọa độ.

Phương pháp:

– Bước 1: Tính tọa độ điểm \(I\) (nếu cần).

– Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

Dạng 2: Viết phương trình đường cong sau khi chuyển hệ tọa độ.

Phương pháp:

– Bước 1: Tìm tọa độ điểm \(I\) (nếu cần)

– Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

– Bước 3: Viết phương trình đường cong đối với hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) – {y_0}\)

Dạng 3: Tìm tâm đối xứng của đồ thị hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\left( {ad – bc \ne 0} \right)\)

Phương pháp:

– Bước 1: Tìm tọa độ điểm \(I\): \(\left\{ \begin{array}{l}{x_0} =  – \dfrac{d}{c}\\{y_0} = \dfrac{a}{c}\end{array} \right.\)

– Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

– Bước 3: Viết phương trình đường cong đối hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) – {y_0}\).

– Bước 4: Chứng minh \(g\left( { – X} \right) =  – g\left( X \right) =  – Y\) suy ra hàm số \(Y = g\left( X \right)\) là hàm số lẻ và kết luận.

Dạng 4: Tìm tâm đối xứng của đồ thị hàm số bậc ba.

Phương pháp:

– Bước 1: Tính \(y’,y”\), giải phương trình \(y” = 0\) tìm nghiệm \({x_0} \Rightarrow \) điểm \(I\left( {{x_0};{y_0}} \right)\)

– Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

– Bước 3: Viết phương trình đường cong đối hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) – {y_0}\).

– Bước 4: Chứng minh \(g\left( { – X} \right) =  – g\left( X \right) =  – Y\) suy ra hàm số \(Y = g\left( X \right)\) là hàm số lẻ và kết luận.

Thuộc chủ đề:Tổng ôn tập MÔN TOÁN Lớp 12

Sidebar chính

Bài viết mới

  • Ôn tập chương 7 – Phương pháp tọa độ trong không gian
  • Phương pháp giải các bài toán về mặt cầu và đường thẳng
  • Phương pháp giải các bài toán về mặt cầu và mặt phẳng
  • Phương trình mặt cầu
  • Phương pháp giải các bài toán về mặt phẳng và đường thẳng

Chuyên mục

  • Công thức Lý lớp 6 (19)
  • Công thức Lý lớp 7 (25)
  • Công thức Sinh lớp 6 (50)
  • Công thức Toán lớp 6 (69)
  • Công thức Toán lớp 7 (55)
  • Học Tiếng Anh 12 (14)
  • Lý thuyết Anh lớp 7 (60)
  • Lý thuyết Địa lớp 7 (49)
  • Lý thuyết Sinh lớp 7 (47)
  • Lý thuyết Sử lớp 7 (38)
  • Lý thuyết Văn lớp 6 (272)
  • Lý thuyết Văn lớp 7 (271)
  • Tổng ôn tập MÔN ĐỊA Lớp 10 (21)
  • Tổng ôn tập MÔN ĐỊA Lớp 11 (20)
  • Tổng ôn tập MÔN ĐỊA Lớp 12 (65)
  • Tổng ôn tập MÔN ĐỊA Lớp 8 (36)
  • Tổng ôn tập MÔN ĐỊA Lớp 9 (33)
  • Tổng ôn tập MÔN GDCD Lớp 10 (14)
  • Tổng ôn tập MÔN GDCD Lớp 11 (10)
  • Tổng ôn tập MÔN GDCD Lớp 12 (9)
  • Tổng ôn tập MÔN HÓA Lớp 10 (36)
  • Tổng ôn tập MÔN HÓA Lớp 11 (58)
  • Tổng ôn tập MÔN HÓA Lớp 12 (77)
  • Tổng ôn tập MÔN HÓA Lớp 8 (39)
  • Tổng ôn tập MÔN HÓA Lớp 9 (45)
  • Tổng ôn tập MÔN LÝ Lớp 10 (49)
  • Tổng ôn tập MÔN LÝ Lớp 11 (52)
  • Tổng ôn tập MÔN LÝ Lớp 12 (78)
  • Tổng ôn tập MÔN LÝ Lớp 8 (24)
  • Tổng ôn tập MÔN LÝ Lớp 9 (42)
  • Tổng ôn tập MÔN SINH Lớp 10 (30)
  • Tổng ôn tập MÔN SINH Lớp 11 (46)
  • Tổng ôn tập MÔN SINH Lớp 12 (64)
  • Tổng ôn tập MÔN SINH Lớp 8 (57)
  • Tổng ôn tập MÔN SINH Lớp 9 (47)
  • Tổng ôn tập MÔN SỬ Lớp 10 (46)
  • Tổng ôn tập MÔN SỬ Lớp 11 (37)
  • Tổng ôn tập MÔN SỬ Lớp 12 (47)
  • Tổng ôn tập MÔN SỬ Lớp 8 (32)
  • Tổng ôn tập MÔN SỬ Lớp 9 (37)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 10 (54)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 11 (46)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 12 (65)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 8 (51)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 9 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 10 (46)
  • Tổng ôn tập MÔN TOÁN Lớp 11 (58)
  • Tổng ôn tập MÔN TOÁN Lớp 12 (71)
  • Tổng ôn tập MÔN TOÁN Lớp 8 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 9 (53)
  • Tổng ôn tập MÔN VĂN Lớp 10 (247)
  • Tổng ôn tập MÔN VĂN Lớp 11 (248)
  • Tổng ôn tập MÔN VĂN Lớp 12 (92)
  • Tổng ôn tập MÔN VĂN Lớp 8 (273)
  • Tổng ôn tập MÔN VĂN Lớp 9 (294)

Học Tập VN (c) 2021 - Giới thiệu - Liên hệ - Sitemap - Bảo mật.
Môn Toán - Học Z - Sách toán - Lop 12 - Hoc VN - Hoc Trắc nghiệm