• Skip to main content
  • Bỏ qua primary sidebar

Học Tập Việt Nam

Trang về học tập tổng hợp các vấn đề liên quan đến việc cho học sinh phổ thông.

Căn bậc hai của số phức và phương trình bậc hai

04/01/2022 by adminhoctap

1. Kiến thức cần nhớ

a) Căn bậc hai của số phức.

– Số phức \(w = x + yi\left( {x,y \in R} \right)\) là căn bậc hai của số phức \(z = a + bi\) nếu \({w^2} = z\).

– Mọi số phức \(z \ne 0\) đều có hai căn bậc hai là hai số đối nhau \(w\) và \( – w\)

– Số thực \(a > 0\) có hai căn bậc hai là \( \pm \sqrt a \); số thực \(a

b) Phương trình bậc hai (Đọc thêm).

Xét phương trình bậc hai tổng quát: \(A{z^2} + Bz + C = 0\left( {A \ne 0} \right)\).

– Biệt thức \(\Delta  = {B^2} – 4AC\).

+ Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({z_{1,2}} =  – \dfrac{B}{{2A}}\)

+ Nếu \(\Delta  \ne 0\) thì phương trình có hai nghiệm phân biệt \({z_{1,2}} = \dfrac{{ – B \pm \sqrt \Delta  }}{{2A}}\) (ở đó \(\sqrt \Delta  \) là kí hiệu căn bậc hai của số phức \(\Delta \))

– Hệ thức Vi-et: \(\left\{ \begin{array}{l}{z_1} + {z_2} =  – \dfrac{B}{A}\\{z_1}{z_2} = \dfrac{C}{A}\end{array} \right.\)

2. Một số dạng toán thường gặp

Dạng 1: Tìm căn bậc hai của số phức.

Phương pháp:

Cách 1: Biến đổi \(z = a + bi\) dưới dạng bình phương của số phức khác.

Cách 2: Giả sử \(w = x + yi\left( {x,y \in R} \right)\) là một căn bậc hai của \(z\), khi đó \({w^2} = z \Leftrightarrow \left\{ \begin{array}{l}{x^2} – {y^2} = a\\2xy = b\end{array} \right.\)

Ví dụ: Tìm căn bậc hai của số phức \(z = 8 + 6i\).

Giải:

Cách 1:

Ta có: \(z = 8 + 6i = 9 + 6i – 1 = {3^2} + 2.3i + {i^2} = {\left( {3 + i} \right)^2}\)

Do đó các căn bậc hai của số phức \(z\) là \(3 + i\) và \( – 3 – i\).

Cách 2:

Giả sử \(w = x + yi\left( {x,y \in R} \right)\) là một căn bậc hai của số phức \(z = 8 + 6i\)

Khi đó \({w^2} = z \Leftrightarrow \left\{ \begin{array}{l}{x^2} – {y^2} = 8\\2xy = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{3}{x}\\{x^2} – \dfrac{9}{{{x^2}}} = 8\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{3}{x}\\{x^4} – 8{x^2} – 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{3}{x}\\\left[ \begin{array}{l}{x^2} =  – 1(L)\\{x^2} = 9(TM)\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3,y = 1\\x =  – 3,y =  – 1\end{array} \right.\)

Vậy có hai căn bậc hai của số phức \(z = 8 + 6i\) là \(3 + i\) và \( – 3 – i\).

Dạng 2: Giải phương trình bậc hai.

Phương pháp:

– Bước 1: Tính \(\Delta  = {B^2} – 4AC\).

– Bước 2: Tìm các căn bậc hai của \(\Delta \)

– Bước 3: Tính các nghiệm:

+ Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({z_{1,2}} =  – \dfrac{B}{{2A}}\)

+ Nếu \(\Delta  \ne 0\) thì phương trình có hai nghiệm phân biệt \({z_{1,2}} = \dfrac{{ – B \pm \sqrt \Delta  }}{{2A}}\) (ở đó \(\sqrt \Delta  \) là kí hiệu căn bậc hai của số phức \(\Delta \))

Ví dụ: Tìm tập nghiệm của phương trình \({z^2} + z + 1 = 0\).

Giải:

Ta có: \(\Delta  = {1^2} – 4.1.1 =  – 3\), các căn bậc hai của \( – 3\) là \(i\sqrt 3 \) và \( – i\sqrt 3 \)

Do đó phương trình có nghiệm \({z_1} = \dfrac{{ – 1 + i\sqrt 3 }}{2}\) và \({z_2} = \dfrac{{ – 1 – i\sqrt 3 }}{2}\).

Vậy tập nghiệm của phương trình \(S = \left\{ {\dfrac{{ – 1 – i\sqrt 3 }}{2};\dfrac{{ – 1 + i\sqrt 3 }}{2}} \right\}\)

Dạng 3 (Đọc thêm): Sử dụng Vi-et để giải bài toán liên quan đến hai nghiệm của phương trình bậc hai.

Phương pháp:

– Bước 1: Nêu định lý vi-et.

– Bước 2: Biểu diễn biểu thức cần tính giá trị để làm xuất hiện tổng và tích hai nghiệm.

– Bước 3: Thay các giá trị tổng và tích vào biểu thức để tính giá trị.

Dạng 4 (Đọc thêm): Giải phương trình bậc cao.

Phương pháp:

Sử dụng các phép biến đổi (phân tích thành nhân tử, đặt ẩn phụ,…) đưa phương trình bậc cao về các phương trình bậc nhất, bậc hai,…để giải phương trình.

Ví dụ: Giải phương trình \({z^4} + 1 = 0\).

Giải:

Ta có: \({z^4} + 1 = 0 \Leftrightarrow {z^4} – {i^2} = 0 \Leftrightarrow \left( {{z^2} – i} \right)\left( {{z^2} + i} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{z^2} = i\left( 1 \right)\\{z^2} =  – i\left( 2 \right)\end{array} \right.\)

Giải (1): Ta tìm căn bậc hai của số phức \(z’ = i\).

Gọi \(w = x + yi\left( {x,y \in R} \right)\) là một căn bậc hai của số phức \(z’ = i\). Khi đó:

\({w^2} = i \Leftrightarrow \left\{ \begin{array}{l}{x^2} – {y^2} = 0\\2xy = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = y\\2{x^2} = 1\end{array} \right.\\\left\{ \begin{array}{l}x =  – y\\ – 2{y^2} = 1(L)\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = y = \dfrac{1}{{\sqrt 2 }}\\x = y =  – \dfrac{1}{{\sqrt 2 }}\end{array} \right. \\ \Rightarrow \left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i\\z =  – \dfrac{1}{{\sqrt 2 }} – \dfrac{1}{{\sqrt 2 }}i\end{array} \right.\)

Giải (2): Ta tìm căn bậc hai của số phức \(z’ =  – i\)

Vì \(z’ =  – i = {i^2}.i\) nên các căn bậc hai của \(z’\) là \(i.\left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i} \right) =  – \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i\) và \(i\left( { – \dfrac{1}{{\sqrt 2 }} – \dfrac{1}{{\sqrt 2 }}i} \right) = \dfrac{1}{{\sqrt 2 }} – \dfrac{1}{{\sqrt 2 }}i\)

Vậy phương trình có các nghiệm \({z_1} = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i;{z_2} =  – \dfrac{1}{{\sqrt 2 }} – \dfrac{1}{{\sqrt 2 }}i;{z_3} =  – \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}i;{z_4} = \dfrac{1}{{\sqrt 2 }} – \dfrac{1}{{\sqrt 2 }}i\).

Thuộc chủ đề:Tổng ôn tập MÔN TOÁN Lớp 12

Sidebar chính

Bài viết mới

  • Ôn tập chương 7 – Phương pháp tọa độ trong không gian
  • Phương pháp giải các bài toán về mặt cầu và đường thẳng
  • Phương pháp giải các bài toán về mặt cầu và mặt phẳng
  • Phương trình mặt cầu
  • Phương pháp giải các bài toán về mặt phẳng và đường thẳng

Chuyên mục

  • Công thức Lý lớp 6 (19)
  • Công thức Lý lớp 7 (25)
  • Công thức Sinh lớp 6 (50)
  • Công thức Toán lớp 6 (69)
  • Công thức Toán lớp 7 (55)
  • Học Tiếng Anh 12 (14)
  • Lý thuyết Anh lớp 7 (60)
  • Lý thuyết Địa lớp 7 (49)
  • Lý thuyết Sinh lớp 7 (47)
  • Lý thuyết Sử lớp 7 (38)
  • Lý thuyết Văn lớp 6 (272)
  • Lý thuyết Văn lớp 7 (271)
  • Tổng ôn tập MÔN ĐỊA Lớp 10 (21)
  • Tổng ôn tập MÔN ĐỊA Lớp 11 (20)
  • Tổng ôn tập MÔN ĐỊA Lớp 12 (65)
  • Tổng ôn tập MÔN ĐỊA Lớp 8 (36)
  • Tổng ôn tập MÔN ĐỊA Lớp 9 (33)
  • Tổng ôn tập MÔN GDCD Lớp 10 (14)
  • Tổng ôn tập MÔN GDCD Lớp 11 (10)
  • Tổng ôn tập MÔN GDCD Lớp 12 (9)
  • Tổng ôn tập MÔN HÓA Lớp 10 (36)
  • Tổng ôn tập MÔN HÓA Lớp 11 (58)
  • Tổng ôn tập MÔN HÓA Lớp 12 (77)
  • Tổng ôn tập MÔN HÓA Lớp 8 (39)
  • Tổng ôn tập MÔN HÓA Lớp 9 (45)
  • Tổng ôn tập MÔN LÝ Lớp 10 (49)
  • Tổng ôn tập MÔN LÝ Lớp 11 (52)
  • Tổng ôn tập MÔN LÝ Lớp 12 (78)
  • Tổng ôn tập MÔN LÝ Lớp 8 (24)
  • Tổng ôn tập MÔN LÝ Lớp 9 (42)
  • Tổng ôn tập MÔN SINH Lớp 10 (30)
  • Tổng ôn tập MÔN SINH Lớp 11 (46)
  • Tổng ôn tập MÔN SINH Lớp 12 (64)
  • Tổng ôn tập MÔN SINH Lớp 8 (57)
  • Tổng ôn tập MÔN SINH Lớp 9 (47)
  • Tổng ôn tập MÔN SỬ Lớp 10 (46)
  • Tổng ôn tập MÔN SỬ Lớp 11 (37)
  • Tổng ôn tập MÔN SỬ Lớp 12 (47)
  • Tổng ôn tập MÔN SỬ Lớp 8 (32)
  • Tổng ôn tập MÔN SỬ Lớp 9 (37)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 10 (54)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 11 (46)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 12 (65)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 8 (51)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 9 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 10 (46)
  • Tổng ôn tập MÔN TOÁN Lớp 11 (58)
  • Tổng ôn tập MÔN TOÁN Lớp 12 (71)
  • Tổng ôn tập MÔN TOÁN Lớp 8 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 9 (53)
  • Tổng ôn tập MÔN VĂN Lớp 10 (247)
  • Tổng ôn tập MÔN VĂN Lớp 11 (248)
  • Tổng ôn tập MÔN VĂN Lớp 12 (92)
  • Tổng ôn tập MÔN VĂN Lớp 8 (273)
  • Tổng ôn tập MÔN VĂN Lớp 9 (294)

Học Tập VN (c) 2021 - Giới thiệu - Liên hệ - Sitemap - Bảo mật.
Môn Toán - Học Z - Sách toán - Lop 12 - Hoc VN - Hoc Trắc nghiệm