• Skip to main content
  • Bỏ qua primary sidebar

Học Tập Việt Nam

Trang về học tập tổng hợp các vấn đề liên quan đến việc cho học sinh phổ thông.

Phương pháp xác định thiết diện của hình chóp

03/01/2022 by adminhoctap

1. Thiết diện của một hình

Định nghĩa: Thiết diện (hay mặt cắt) của hình \(H\) khi cắt bởi mặt phẳng \(\left( P \right)\) là phần chung của \(mp\left( P \right)\) và hình \(H\).

Ví dụ:

Mặt phẳng \(\left( \alpha  \right)\) cắt các mặt phẳng \(\left( {SAB} \right),\left( {SBC} \right),\left( {SCD} \right),\left( {SDA} \right)\) lần lượt theo các giao tuyến \(FG,GH,HE,EF\).

Khi đó, thiết diện của hình chóp \(S.ABCD\) khi cắt bởi \(\left( \alpha  \right)\) chính là tứ giác \(FGHE\).

2. Phương pháp xác định thiết diện của hình chóp

Cho hình chóp \(S.{A_1}{A_2}…{A_n}\), cắt hình chóp bởi một mặt phẳng \(\left( \alpha  \right)\). Xác định thiết diện của hình chóp khi cắt bở mặt phẳng \(\left( \alpha  \right)\).

Phương pháp:

– Bước 1: Tìm giao điểm của mặt phẳng \(\left( \alpha  \right)\) với các đường thẳng chứa các cạnh của hình chóp.

– Bước 2: Nối các giao điểm tìm được ở trên thành đa giác.

– Bước 3: Kết luận: Đa giác tìm được ở trên chính là thiết diện của hình chóp khi cắt bởi mặt phẳng \(\left( \alpha  \right)\).

– Giao điểm ở bước 1 thường được tìm bằng cách:

+) Tìm hai đường thẳng \(a,b\) lần lượt thuộc các mặt phẳng \(\left( \alpha  \right),\left( \beta  \right)\), đồng thời chúng nằm trong mặt phẳng \(\left( \gamma  \right)\) nào đó.

+) Giao điểm \(M = a \cap b\) chính là điểm chung của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

– Đường thẳng chứa cạnh của thiết diện chính là giao tuyến của mặt phẳng \(\left( \alpha  \right)\) với mỗi mặt của hình chóp.

Ví dụ: Cho hình chóp \(S.ABCD\) có \(ABCD\) là tứ giác lồi và một điểm \(M\) nằm trên cạnh \(SB\). Xác định thiết diện cắt bởi mặt phẳng \(\left( {ADM} \right)\) với hình chóp.

Giải:

Trước hết ta sẽ tìm điểm $N$ là giao điểm của $(ADM)$ với $SC$.

Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(O = AC \cap BD \Rightarrow SO \subset \left( {SBD} \right)\).

Trong mặt phẳng \(\left( {SBD} \right)\), gọi \(G = SO \cap DM \Rightarrow G \in SO \subset \left( {SAC} \right)\).

Trong mặt phẳng \(\left( {SAC} \right)\), gọi \(N = AG \cap SC\).

Ta có:

+ $(ADM)$ cắt $(SAB)$ theo giao tuyến $AM$.

+ $(ADM)$ cắt $(SAD)$ theo giao tuyến $AD$.

+ $(ADM)$ cắt $(SCD)$ theo giao tuyến $DN$.

+ $(ADM)$ cắt $(SBC)$ theo giao tuyến $MN$.

Thiết diện cần tìm là tứ giác \(ADNM\).

Thuộc chủ đề:Tổng ôn tập MÔN TOÁN Lớp 11

Sidebar chính

Bài viết mới

  • Ôn tập chương 7 – Phương pháp tọa độ trong không gian
  • Phương pháp giải các bài toán về mặt cầu và đường thẳng
  • Phương pháp giải các bài toán về mặt cầu và mặt phẳng
  • Phương trình mặt cầu
  • Phương pháp giải các bài toán về mặt phẳng và đường thẳng

Chuyên mục

  • Công thức Lý lớp 6 (19)
  • Công thức Lý lớp 7 (25)
  • Công thức Sinh lớp 6 (50)
  • Công thức Toán lớp 6 (69)
  • Công thức Toán lớp 7 (55)
  • Học Tiếng Anh 12 (14)
  • Lý thuyết Anh lớp 7 (60)
  • Lý thuyết Địa lớp 7 (49)
  • Lý thuyết Sinh lớp 7 (47)
  • Lý thuyết Sử lớp 7 (38)
  • Lý thuyết Văn lớp 6 (272)
  • Lý thuyết Văn lớp 7 (271)
  • Tổng ôn tập MÔN ĐỊA Lớp 10 (21)
  • Tổng ôn tập MÔN ĐỊA Lớp 11 (20)
  • Tổng ôn tập MÔN ĐỊA Lớp 12 (65)
  • Tổng ôn tập MÔN ĐỊA Lớp 8 (36)
  • Tổng ôn tập MÔN ĐỊA Lớp 9 (33)
  • Tổng ôn tập MÔN GDCD Lớp 10 (14)
  • Tổng ôn tập MÔN GDCD Lớp 11 (10)
  • Tổng ôn tập MÔN GDCD Lớp 12 (9)
  • Tổng ôn tập MÔN HÓA Lớp 10 (36)
  • Tổng ôn tập MÔN HÓA Lớp 11 (58)
  • Tổng ôn tập MÔN HÓA Lớp 12 (77)
  • Tổng ôn tập MÔN HÓA Lớp 8 (39)
  • Tổng ôn tập MÔN HÓA Lớp 9 (45)
  • Tổng ôn tập MÔN LÝ Lớp 10 (49)
  • Tổng ôn tập MÔN LÝ Lớp 11 (52)
  • Tổng ôn tập MÔN LÝ Lớp 12 (78)
  • Tổng ôn tập MÔN LÝ Lớp 8 (24)
  • Tổng ôn tập MÔN LÝ Lớp 9 (42)
  • Tổng ôn tập MÔN SINH Lớp 10 (30)
  • Tổng ôn tập MÔN SINH Lớp 11 (46)
  • Tổng ôn tập MÔN SINH Lớp 12 (64)
  • Tổng ôn tập MÔN SINH Lớp 8 (57)
  • Tổng ôn tập MÔN SINH Lớp 9 (47)
  • Tổng ôn tập MÔN SỬ Lớp 10 (46)
  • Tổng ôn tập MÔN SỬ Lớp 11 (37)
  • Tổng ôn tập MÔN SỬ Lớp 12 (47)
  • Tổng ôn tập MÔN SỬ Lớp 8 (32)
  • Tổng ôn tập MÔN SỬ Lớp 9 (37)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 10 (54)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 11 (46)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 12 (65)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 8 (51)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 9 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 10 (46)
  • Tổng ôn tập MÔN TOÁN Lớp 11 (58)
  • Tổng ôn tập MÔN TOÁN Lớp 12 (71)
  • Tổng ôn tập MÔN TOÁN Lớp 8 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 9 (53)
  • Tổng ôn tập MÔN VĂN Lớp 10 (247)
  • Tổng ôn tập MÔN VĂN Lớp 11 (248)
  • Tổng ôn tập MÔN VĂN Lớp 12 (92)
  • Tổng ôn tập MÔN VĂN Lớp 8 (273)
  • Tổng ôn tập MÔN VĂN Lớp 9 (294)

Học Tập VN (c) 2021 - Giới thiệu - Liên hệ - Sitemap - Bảo mật.
Môn Toán - Học Z - Sách toán - Lop 12 - Hoc VN - Hoc Trắc nghiệm