Trang chủ Giải SBT Toán lớp 10 [Cánh diều] Giải bài 70 trang 97 SBT toán 10 – Cánh diều>

Giải bài 70 trang 97 SBT toán 10 – Cánh diều>

4

Đề bài

Cho parabol (P) có phương trình chính tắc: y2 = 2px (p > 0) và đường thẳng x = m (m > 0) cắt (P) tại hai điểm I, K phân biệt. Chứng minh hai điểm IK đối xứng nhau qua trục Ox.

Phương pháp giải – Xem chi tiết

Bước 1: Tham số hóa tọa độ I, K theo PT đường thẳng x = m

Bước 2: Thay tọa độ I, K vào PT (P) và chứng minh tung độ 2 điểm này trái dấu rồi kết luận

Lời giải chi tiết

Do \(I,K \in d:x = m\) nên \(I(m;t),K(m;k)\)

Do \(I,K \in (P)\) nên \(\left\{ \begin{array}{l}{t^2} = 2pm\\{k^2} = 2pm\end{array} \right.\)\( \Leftrightarrow {t^2} = {k^2} \Leftrightarrow \left\{ \begin{array}{l}t = k\\t =  – k\end{array} \right.\)

Với t = k thì IK trùng nhau \( \Rightarrow \) t = k không thỏa mãn

Với t = –k thì I(m ; t) và K(m ; -t). Khi đó IK đối xứng nhau qua trục Ox (ĐPCM)

Bài trướcGiải bài 82 trang 99 SBT toán 10 – Cánh diều>
Bài tiếp theoGiải bài 58 trang 90 SBT toán 10 – Cánh diều>

BÌNH LUẬN

Vui lòng nhập bình luận của bạn
Vui lòng nhập tên của bạn ở đây