• Skip to main content
  • Bỏ qua primary sidebar

Học Tập Việt Nam

Trang về học tập tổng hợp các vấn đề liên quan đến việc cho học sinh phổ thông.

Lũy thừa với số mũ tự nhiên. Nhân-chia hai lũy thừa cùng cơ số

06/12/2021 by adminhoctap

I. Các kiến thức cần nhớ

1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc $n$ của $a$ là tích của $n$ thừa số bằng nhau, mỗi thừa số bằng $a :$

 ${a^n} = a.a \ldots ..a$ ($n$  thừa số $a$ ) ($n$  khác $0$ )

$a$  được gọi là cơ số.

$n$ được gọi là số mũ.

${a^2}$  gọi là $a$  bình phương (hay bình phương của $a$ );                  

${a^3}$  gọi là $a$ lập phương (hay lập phương của $a$.)

Quy ước: ${a^1} = a$; ${a^0} = 1\left( {a \ne 0} \right).$

Ví dụ: \({2^3} = 2.2.2 = 8\)

2. Nhân hai lũy thừa cùng cơ số

${a^m}.{a^n} = {a^{m + n}}$

Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ.

Ví dụ: \({3^2}{.3^5} = {3^{2 + 5}} = {3^7}.\)

3. Chia hai lũy thừa cùng cơ số

${a^m}:{a^n} = {a^{m – n}}$ \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)

Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ cho nhau.

Ví dụ: \({3^5}:{3^3} = {3^{5 – 3}} = {3^2} = 3.3 = 9.\)

4. Mở rộng

a) Lũy thừa của lũy thừa

\({\left( {{a^m}} \right)^n} = {a^{m.n}}\)

Ví dụ: \({\left( {{2^3}} \right)^4} = {2^{3.4}} = {2^{12}}\)

b) Lũy thừa của một tích

\({\left( {a.b} \right)^m} = {a^m}.{b^m}\)

Ví dụ: \({\left( {2.3} \right)^4} = {2^4}{.3^4}\)

II. Các dạng toán thường gặp

Dạng 1: Viết gọn một tích, một phép tính dưới dạng một lũy thừa

Phương pháp giải

 Áp dụng công thức:  $\underbrace {a.a.a…..a}_{n\,{\rm{thua}}\,{\rm{so}}}$$ = {a^n};$${a^m}.{a^n} = {a^{m + n}};{a^m}:{a^n} = {a^{m – n}}\left( {a \ne 0,m \ge n} \right).$

Dạng 2:   Nhân; chia  hai lũy thừa cùng cơ số

Phương pháp giải

 Áp dụng công thức:${a^m}.{a^n} = {a^{m + n}};{a^m}:{a^n} = {a^{m – n}}\left( {a \ne 0,m \ge n} \right).$

Dạng 3: So sánh các số viết dưới dạng lũy thừa

Phương pháp giải

 Để so sánh các số viết dưới dạng lũy thừa, ta có thể làm theo:

Cách 1: Đưa về cùng cơ số là số tự nhiên, rồi so sánh hai số mũ

Nếu \(m > n\) thì \({a^m} > {a^n}\)

Cách 2: Đưa về cùng số mũ rồi so sánh hai cơ số

Nếu \(a > b\) thì \({a^m} > {b^m}\)

Cách 3: Tính cụ thể rồi so sánh

Ngoài ra ta còn sử dụng tính chất bắc cầu: Nếu \(a

Dạng 4:  Tìm số mũ của một lũy thừa trong một đẳng thức.

Phương pháp giải

 -Đưa về hai luỹ thừa của cùng một cơ số.

-Sử dụng tính chất : với \(a \ne 0;a \ne 1\) nếu ${a^m} = {a^n}$ thì $m = n\,\,(a,m,n \in N).$

Dạng 5:  Tìm cơ số của lũy thừa

Phương pháp giải

– Dùng định nghĩa lũy thừa:

$\underbrace {a.a…..a}_{n\,{\rm{thừa}}\,{\rm{số}}\,a}$ $ = {a^n}$
– Hoặc sử dụng tính chất với \(a;b \ne 0;a;b \ne 1\)

nếu ${a^m} = {b^m}$ thì $a = n\,\,(a,b,m,n \in N).$

Thuộc chủ đề:Công thức Toán lớp 6

Sidebar chính

Bài viết mới

  • Ôn tập chương 7 – Phương pháp tọa độ trong không gian
  • Phương pháp giải các bài toán về mặt cầu và đường thẳng
  • Phương pháp giải các bài toán về mặt cầu và mặt phẳng
  • Phương trình mặt cầu
  • Phương pháp giải các bài toán về mặt phẳng và đường thẳng

Chuyên mục

  • Công thức Lý lớp 6 (19)
  • Công thức Lý lớp 7 (25)
  • Công thức Sinh lớp 6 (50)
  • Công thức Toán lớp 6 (69)
  • Công thức Toán lớp 7 (55)
  • Học Tiếng Anh 12 (14)
  • Lý thuyết Anh lớp 7 (60)
  • Lý thuyết Địa lớp 7 (49)
  • Lý thuyết Sinh lớp 7 (47)
  • Lý thuyết Sử lớp 7 (38)
  • Lý thuyết Văn lớp 6 (272)
  • Lý thuyết Văn lớp 7 (271)
  • Tổng ôn tập MÔN ĐỊA Lớp 10 (21)
  • Tổng ôn tập MÔN ĐỊA Lớp 11 (20)
  • Tổng ôn tập MÔN ĐỊA Lớp 12 (65)
  • Tổng ôn tập MÔN ĐỊA Lớp 8 (36)
  • Tổng ôn tập MÔN ĐỊA Lớp 9 (33)
  • Tổng ôn tập MÔN GDCD Lớp 10 (14)
  • Tổng ôn tập MÔN GDCD Lớp 11 (10)
  • Tổng ôn tập MÔN GDCD Lớp 12 (9)
  • Tổng ôn tập MÔN HÓA Lớp 10 (36)
  • Tổng ôn tập MÔN HÓA Lớp 11 (58)
  • Tổng ôn tập MÔN HÓA Lớp 12 (77)
  • Tổng ôn tập MÔN HÓA Lớp 8 (39)
  • Tổng ôn tập MÔN HÓA Lớp 9 (45)
  • Tổng ôn tập MÔN LÝ Lớp 10 (49)
  • Tổng ôn tập MÔN LÝ Lớp 11 (52)
  • Tổng ôn tập MÔN LÝ Lớp 12 (78)
  • Tổng ôn tập MÔN LÝ Lớp 8 (24)
  • Tổng ôn tập MÔN LÝ Lớp 9 (42)
  • Tổng ôn tập MÔN SINH Lớp 10 (30)
  • Tổng ôn tập MÔN SINH Lớp 11 (46)
  • Tổng ôn tập MÔN SINH Lớp 12 (64)
  • Tổng ôn tập MÔN SINH Lớp 8 (57)
  • Tổng ôn tập MÔN SINH Lớp 9 (47)
  • Tổng ôn tập MÔN SỬ Lớp 10 (46)
  • Tổng ôn tập MÔN SỬ Lớp 11 (37)
  • Tổng ôn tập MÔN SỬ Lớp 12 (47)
  • Tổng ôn tập MÔN SỬ Lớp 8 (32)
  • Tổng ôn tập MÔN SỬ Lớp 9 (37)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 10 (54)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 11 (46)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 12 (65)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 8 (51)
  • Tổng ôn tập MÔN TIẾNG ANH Lớp 9 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 10 (46)
  • Tổng ôn tập MÔN TOÁN Lớp 11 (58)
  • Tổng ôn tập MÔN TOÁN Lớp 12 (71)
  • Tổng ôn tập MÔN TOÁN Lớp 8 (55)
  • Tổng ôn tập MÔN TOÁN Lớp 9 (53)
  • Tổng ôn tập MÔN VĂN Lớp 10 (247)
  • Tổng ôn tập MÔN VĂN Lớp 11 (248)
  • Tổng ôn tập MÔN VĂN Lớp 12 (92)
  • Tổng ôn tập MÔN VĂN Lớp 8 (273)
  • Tổng ôn tập MÔN VĂN Lớp 9 (294)

Học Tập VN (c) 2021 - Giới thiệu - Liên hệ - Sitemap - Bảo mật.
Môn Toán - Học Z - Sách toán - Lop 12 - Hoc VN - Hoc Trắc nghiệm